Questioning the Pathogenic Role of the GLA p.Ala143Thr "Mutation" in Fabry Disease: Implications for Screening Studies and ERT.
نویسندگان
چکیده
Fabry disease is an X-linked inborn error of glycosphingolipid metabolism caused by quantitative or qualitative defects in the lysosomal enzyme alfa-Galactosidase A (aGAL A), ultimately resulting in vital organ dysfunction. Mainly the kidneys, the heart, and the central nervous system are involved. While the classical phenotype of Fabry disease is readily recognizable, screening studies have identified clinical variants. Here, we report the phenotype associated with the GLA p.Ala143Thr (c.427G>A) mutation in 12 patients aged 42-83 years. None of the patients had classical Fabry signs or symptoms as angiokeratoma, hypohidrosis, acroparesthesia, or cornea verticillata. Possible Fabry manifestations were renal failure (5/12), stroke (7/12), and left ventricular hypertrophy (5/12), but these were not necessarily attributable to the p.Ala143Thr mutation, as a cardiac biopsy in one female and left ventricular hypertrophy and kidney biopsies in two males with renal failure and microalbuminuria lacked Gb-3 deposits. The literature data on this mutation as well as data collected in the Fabry Outcome Survey (FOS) database confirm these findings. The association of renal failure, stroke, and left ventricular hypertrophy with this mutation could be the result of selection bias, as most patients were detected in screening studies.We conclude that care should be taken with attribution of vital organ dysfunction to GLA sequence alterations. In case of the p.Ala143Thr mutation, and possibly also other mutations associated with an attenuated phenotype, diagnostic tools such as biopsy and imaging should critically evaluate the relation of end-organ failure with Fabry disease, as this has important consequences for enzyme replacement therapy.
منابع مشابه
Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease
The CRISPR/Cas9 Genome-editing system has revealed promising potential for generating gene mutation, deletion, and correction in human cells. Application of this powerful tool in Fabry disease (FD), however, still needs to be explored. Enzyme replacement therapy (ERT), a regular administration of recombinant human α Gal A (rhα-GLA), is a currently available and effective treatment to clear the ...
متن کاملScreening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family
Objective(s): Non-syndromic sensorineural hearing loss (NSHL) is a common disorder affecting approximately 1 in 500 newborns. This type of hearing loss is extremely heterogeneous and includes over 100 loci. Mutations in the GJB2 gene have been implicated in about half of autosomal recessive NSHL (ARNSHL) cases, making this the most common cause of ARNSHL. For the latter form of deafness, most f...
متن کاملClinical characteristics and mutation spectrum of GLA in Korean patients with Fabry disease by a nationwide survey
Fabry disease is a rare X-linked lysosomal storage disorder caused by an α-galactosidase A deficiency. The progressive accumulation of globotriaosylceramide (GL-3) results in life-threatening complications, including renal, cardiac, and cerebrovascular diseases. This study investigated the phenotypic and molecular spectra of GLA mutations in Korean patients with Fabry disease using a nationwide...
متن کاملFabry dissase from the dentist view
Fabry disease is a rare, inherited disease with lack of the enzyme alpha-galactosidase A (α-Gal) in the cells of the body that participates in the breakdown of fat. The disease begins in early childhood, progresses slowly throughout life and results in severe damage of the kidneys, heart and central nervous system. The disease is life-threatening and if left untreated, death ...
متن کاملFabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C.
Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JIMD reports
دوره 8 شماره
صفحات -
تاریخ انتشار 2013